Part 1: Agent基础

理解AI Agent的本质,从LLM到自主智能体的演进

章节列表

章节标题核心问题
01Agent的本质什么是Agent?与普通Chatbot有何不同?
02ReAct循环Agent如何思考和行动?

学习目标

完成本Part后,你将能够:

  • 理解Agent的定义和自主性谱系
  • 掌握ReAct (Reason-Act-Observe) 基础循环
  • 区分Agent与传统Chatbot的本质差异
  • 了解Shannon架构的整体设计理念

Shannon代码导读

Shannon/
├── docs/multi-agent-workflow-architecture.md  # 架构总览
├── go/orchestrator/internal/workflows/strategies/react.go   # ReactWorkflow(工作流层)
└── go/orchestrator/internal/workflows/patterns/react.go     # ReactLoop(模式层)

前置知识

  • LLM基础概念 (Prompt、Token、Temperature)
  • 基本编程能力 (Go/Python任一)
引用本文 / Cite
Zhang, W. (2026). Part 1: Agent基础. In AI Agent 架构:从单体到企业级多智能体. https://waylandz.com/ai-agent-book/Part1概述
@incollection{zhang2026aiagent_Part1概述,
  author = {Zhang, Wayland},
  title = {Part 1: Agent基础},
  booktitle = {AI Agent 架构:从单体到企业级多智能体},
  year = {2026},
  url = {https://waylandz.com/ai-agent-book/Part1概述}
}